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Heredity of Stationary and Reversible Stochastic Processes
by
Richard F. Serfozo
Georgia Institute of Technology
Abstract. When a stochastic process (a random measure, set, field,
etc. on a group) 1s stationary, ergodic, or reversible, then certain
functions of this process inherit these properties. We present ¥

sufficient conditions for this inheritance.

Introduction. Associated with a queueing network process (see

Chapters 2,3 of Kelly (1979)), there are a number of stochastic processes
that describe various aspects of the queues. Examples are (i) the point
process of times at which customers move from a certain set of queues to
another set, and (1ii) the process depicting the service station with the
largest queue and the length of that queue over time. When the queueing
network process 1is stationary or reversible, do these associated
processes inherit these properties? I shall present general criteria for
this inheritance. The basic issue 18: 1If a stochastic process is
stationary orbreversible, then what types of functions of it are also
stationary or reversible?

Preliminaries. Let X = {X(t): t € R} be a stochastic process with

state space S. Here R denotes the real line or, more generally, a group
with a o-field R on it that renders the group operation (addition)
measurable. Assume that X has sample paths in a subspace X of the space

F(R,S) of all measurable functions from R to S. The process X is '

; This research was supported in part by grant AFOSR~84-0367.




stationary if, for any sl,...,sn in R,

d

X(s, + t),...,X(sn + t) X(sl),...,x(sn), teR,

1
(here d means equality in distribution). A compact way of expressing
this is X o Tt d X, t € R, where o denotes the convolution operator and
Tt is the time-shift transformation on R (Tts = s + t). A stationary

process X is ergodic if each of its invariant events has probability zero

or one (an event A is invariant for X if there i1s a B ¢ X such that

{X o Tt € A} = B, t € R). The process X is reversible if it is
stationary and X o T d X, where T  is the time-reversal transformation
on R (Tt =-t). Note that X is reversible if and only 1f X o Tt oT d
X, teR (this is sometimes used as the definition).
The preceding terminology also applies to point processes and other
random elements. Let N = {N(B): B ¢ R} be a point process on R, where
N(B) represents the number of points (possibly infinite) in the set B.
Stationarity, ergodicity, and reversibility of N are defined as above, .
where Tt and T are the time-shift and time-reversal transformations on R
(instead of R): T,B =B+ t, T B = -B. For instance, N is reversible if
it is stationary (N o Ttg N, t €eR) and N o T d N. There are similar
definitions of stationarity, ergodicity, and reversibility for random :
measures, random sets, etc., and vectors of these elements.
It is well known that if the process X is stationary and g: § + S°' 4
and h: X~» E(R,S') are measurable functions, then the processes Y(t) = !

g(X(t)) and 2(t) = h(X o Tt) are also stationary. (The g is a special -

case of h.) Moreover, Y and Z are ergodic when X is. See for instance
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Chapter 6 of Breiman (1968). In addition, an easy check shows that Y and

Z are reversible when X is. I shall now show how these results extend to

a larger class of functions and to point processes and other random

elements. ¢
Results. A key observation is that stationarity and reversibility

are special cases of the following notion of invariance of a process

under a family of "time” transformations. Let Y be & random element and

let ¢ be a family of measurable transformations from the domain of Y onto

itself. The domain of Y is R or R or cartesion products of them. The

random element Y is invariant under the set of transformations ¢ if Yo¢ g

Y for each ¢ € $, For example, the vector Y = (X,N) is reversible 1f it
is invariant under the transformations {T-,Tt: t € R}, where T and Tt R
are the time-reversal and time-shift transformations on R x R.

For the following results, let Y and Z denote random elements
(possibly vectors of processes, measures, sets, etc.) with sample paths
or realizations in the respective spaces ¥ and Z. Assume that Z = £(Y),
where f: ¥ + 7 is a measurable function.

Lemma, If Y is invariant under the set of transformations ¢, and f
satisfies f(y) o ¢ = f(y o ¢), for each $ € ¢, y ¢ Y, then Z is invariant

under the set of transformations ¢.

Proof. This follows since, for each ¢ € ¢, 2

}
Zo¢=f(Y) o¢p=f(Y o4 = £(Y) = Z.

Proposition. If Y is stationary and f satisfies

(1) f(y) o Tt = f(y o Tt)’ for each t ¢ R, y eV,

then Z {s stationary. If Y is reversible and f satisfies (1) and .

f(y) o T = f(y o T_), y € Y, then Z {s reversible. If Y is stationary




and ergodic and f satisfies (1), then Z is stationary and ergodic.
Proof. The first two assertions are special cases of the preceding
lemma. The third assertion follows since {Z o Tt € A} =

{Yy o Tt € f-l(A)} implies that the invariant events of Z are the same as
those for Y.

Example. Suppose Y = {(Yl(t)""’Ym(t)): t € R} is a queueing network
process, where Yj(t) denotes the number of customers at queue j at time
t. Assume that Y cannot have an infinite number of transitions in a
finite time interval. Specifics on the operation of the queues are not

needed for this discussion. Let ¥J(t) = ¢ Y,(t), the number of
jel

customers in the set of queues Jc {l,...,m}. Let N denote the point
process of times at which customers move from J to another set of queues
K, and let X(t) denote the largest number of customers in J since the
last time the number was zero. Clearly (N,X) = f(Y) = (fl (n, fZ(Y))’
where

fl(y) = tiBHYJ(C) = YJ(c-) -1, YK(t) = YK(c-) + 1),

I is the indicator function, and
= . t
f?_(y)(t) max{yJ(s). T, (s <t}, t eR,

and T, = sup{s < t: yJ(s) = 0}, assuming that T, exists for each t. Then ¢
the preceding proposition establishes that the vector (N,X) is

stationary, ergodic or reversible when Y has these respective

properties.
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Extensions. The lemma extends to state—space transformations as well

as time transformations as follows. Define the random element Y to be

d
(h,®)-1invariant i{f h(Y o ¢) = h(Y) o ¢, ¢ € ¢, where h: ¥+ F(R,S') 1is
measurable. For example, if the process X is (h,{Tt: t € R})-invariant,
where h(x)(t) = g(x(t)) and g: S + S satisfies g(g(s)) = s, then X is

dynamically reversible (see p. 31 of Kelly (1979)). The lemma for
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(h,®)~invariance is: If Y is (h,d)~invariant and f satisfies h(f(y) o ¢)

= h(f(y © ¢)), ¢ ¢ &, y ¢ ¥, then Z = £(Y) is also (h,d)-invariant. The
preceding results readily extend to time and space transformations h,¢

that are random.
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